

PRODUCT SELECTION DATA

GASKETED PLATE HEAT EXCHANGERS

Decoupling of the machines to the system Cost efficient design Qualified and reliable High heat transfer coefficient Close temperature approach

10TE

Large range capable to handle water flow rate up to 800m³/h

10TE gasketed plate heat exchangers are particularly well-suited for a wide range of applications:

- Heat pump installations
- Water cooled chillers
- Heat recovery
- Heating and cooling sub-stations
- Domestic water heating
- Swimming pool heating
- Recovery on corrosive waste
- Geothermal energy recovery
- Industrial processes

DESCRIPTION

Gasketed plate heat exchanger consists of a number of corrugated heat transfer plates (P) compressed by means of tightening bolts (B) between a front fixed frame plate (F) and a rear moveable frame plate (R). Specific rubber gaskets (G) fastened on each plates generates two alternating independent circuits where the heat transfer between the two fluids take place in parallel and countercurrent flow. The unit is connected with the pipe system by nozzles or flanged connections (C).

SELECTION

Due to the range's extreme modularity, the thermal selection must be optimised on the thermal requirements and the allowable pressure drops of each circuit. The importance of pressure drops must not be underestimated when selecting an heat exchanger, as it influences the choice of model and number of plates and thus the heat transfer area.

The heat transfer area is also influenced by other factors, such as the height to width ratio, the angle and depth of the chevron patterns.

ADVANTAGES

- Excellent heat transfer coefficient
- Very low pinch point temperatures possible
- High corrosion resistance
- Compact footprint
- Easy to install and to maintain
- Low-capacity circuits and fluid retention volume
- Possibility of heat transfer area extension
- Maximum differential pressure equal to maximum operating pressure

PRECAUTIONS

- Do not damage the exchanger gaskets:
 - Avoid water hammering, overpressure/temperature and limit on/off cycles.
 - Do not use 1/4-turn valves.
 - Use with steam between 0 and 3 bar (effective) (Except for 10TEE455+ & 10TEE705+).
 - Provide a control system adapted to the requirements and which takes the low capacity of the circuits into account.
- Ensure the plates are kept clean so they maintain their thermal efficiency:
 - Filter fluids containing suspended particles.
 - Ensure the fluids are constantly circulating in the exchanger to prevent any build-up or scale.
 - Install nozzles on the pipes for cleaning in place.

RANGE

		10T	EE0	20+	10T	EE0	40+	10T	EE08	30+	10T	EE07	70+	10T	EE1	60+	10T	EE2	60+	10TI	EE11	10+	10T	EE2	10+	10T	EE4	10+
Width	mm		145			245					320																	
Height	mm		305			455			740			527			857			1202		!	584			848		1	1375	
Connections diame	eter				DN3	32 1'	'1/4							D	150	2"							DN	65 2	"1/2			
Corrugation angle						H/L					H/L					H/L												
Max. water flowrate	m³/h	19				63					80																	
PS=> Max working pressure	bar	10	16	25	10	16	25	10	16	25	10	16	25	10	16	25	10	16	25	10	16	25	10	16	25	10	16	25

		10	TEE27)+	10	TEE30	0+	10	TEE45	0+	10	TEE45	5+	10	TEE70	5+
Width	mm	nm 320			425					427						
Height	mm	1071			877 1322			1322		1325				1770		
Connections diame	eter		DN80 3'	,						DN1	00 4"					
Corrugation angle			H/L							Н	/L					
Max. water flowrate	m³/h		110			240										
PS=> Max working pressure	bar	10	16	25	10	16	25	10	16	25	10	16	25	10	16	25

		10TEI	Ξ400+	10TEI	Ξ600 +	10TEI	E900+	10TEI	E650+	10TEI	E990+
Width r	mm		500					67	78	668	
Height r	mm	10	55	15	1503 1951			1340 1825			25
Connections diame	ter			DN1	50 6"			DN200 8"			
Corrugation angle				Н	/L				Н	/L	
Max. water flowrate	n³/h		380					80	00	73	30
PS=> Max working pressure	bar	10	16	10	16	10	16	10	16	10	16

Plate thickness : 0,4mm - 0,5mm - 0,6mm - 0,7mm (Except for 10TEE455+ & 10TEE705+) - availability according to model, material, pressure

Plate material : 304 stainless steel - 316L stainless steel - 254 SMO (Except for 10TEE455+ , 10TEE705+ & 10TEE990+)
 - Titanium (Except for 10TEE455+ & 10TEE705+)

- Gasket material : NBR EPDM Prx FPM (Except for 10TEE455+ & 10TEE705+)
- Frame material : Carbon steel Stainless steel (Except for 10TEE455+ & 10TEE705+)

OPTIONS

Double wall plates section

10TEE040+ 10TEE080+ 10TEE160+

Description

Double-wall plates consist of two identical heat transfer plates embossed together and then joined by laser welding around the inlet and outlet portholes. Such kind of coupling generates a thin air gap between the two plates that, in case of welding or plate's failure, prevents fluids intermixing and brings to an external leakage visually detectable. Suitable for all the heat transfer processes where cross contamination is to avoid, the double-wall plates are the right solution for all those HVAC applications where a higher level of safety is recommendable and/or required by local rules.

Benefits

Minimize the risk of fluids intermixing.

Allow visual detection from the outside of any internal leak. Offer all the advantages of Gasketed Plate Heat Exchanger technology: maximum heat transfer, compact design and easy maintenance.

Technical data

Material of plates: AISI 316L

Design standard: PED 2014/68/EU up to risk cat. IV Pressure design / test (g): up to 16 / 26 bar

FL insulation (DN 32, DN 50 and DN 65 models)

Description

FL is the thermal insulation jacket designed to combine thermal insulation performance, compactness and versatility in heating and cooling applications of our plate heat exchangers up to size DN65 (2"1/2).

Made of closed cell expanded elastomer with and external PVC protection layer it's highly flexible and soft-touch.

Supplied as a four pieces kit, it can be easily and quickly assembled thanks to practical hook and loop closure system.

Advantages

- Heat exchanger fully contained in the insulation jacket: minimized energy losses and condensation, higher level of safety and comfort for those who work around the heat exchanger.
- Prepackaged insulation, with pre-cut holes and strap fastening: easy and quick installation, reduced installation costs. No special tools required for the assembly.
- Lightweight and highly flexible material: easy to adapt on site to any product's configuration and to fulfill different customer's needs.
- Reduced transport and stockage costs

Technical specifications

Exterior finish:

- Blue PVC protection layer 0,6 mm thick.
- Protective against mechanical wear and UV-radiation.

Insulating materials:

- Black closed-cell flexible elastomeric foam (FEF).
- 9 mm thick for 020+, 040+, 080+, and 19 mm thick for 070+, 160+, 260+, 110+, 210+ models.
- Thermal conductivity coefficient (λ-value): ≤ 0,038 W/(m*k) at 40°C (EN12667).
- Fire reaction: B s3, d0 (EN 13501-1).
- Flexible and expanded CFC and HCFC-free rubber foam. It does not damage the ozone layer (ODP zero) and does not contribute to the greenhouse effect (GWP zero). Do not contain cadmium and Formaldehyde.
- Operating temperature limits: -10°C / + 110°C

Dimensions

DN 32										
10TEE020+	L	Н	W	h						
Max. 29 p.	280	450	130	125						
Max. 49 p.	380	450	130	125						
Мах. 75 р.	580	450	130	125						
10TEE040+	L	Н	W	h						
Max. 29 p.	280	595	130	125						
Max. 49 p.	380	595	130	125						
Мах. 75 р.	580	595	130	125						
10TEE080+	L	Н	W	h						
Max. 29 p.	280	865	130	125						
Max. 49 p.	380	865	130	125						
Max. 75 p.	580	865	130	125						
Мах. 101 р.	580	865	130	125						

DN 50										
10TEE070+	L	Н	W	h						
Max. 41 p.	472	858	185	250						
Мах. 71 р.	612	858	185	250						
Мах. 101 р.	752	858	185	250						
Мах. 151 р.	982	858	185	250						
10TEE160+	L	Н	W	h						
Max. 41 p.	472	1188	185	250						
Max. 71 p.	612	1188	185	250						
Мах. 101 р.	752	1188	185	250						
Мах. 151 р.	982	1188	185	250						
Max. 251 p.	1442	1188	185	250						
10TEE260+	L	Н	W	h						
Max. 41 p.	472	1533	185	250						
Мах. 71 р.	612	1533	185	250						
Мах. 101 р.	752	1533	185	250						
Мах. 151 р.	982	1533	185	250						
Max. 251 p.	1442	1533	185	250						

DN 65										
10TEE110+	L	н	W	h						
Max. 41 p.	490	900	233	251						
Max. 71 p.	630	900	233	251						
Мах. 101 р.	770	900	233	251						
Мах. 151 р.	1000	900	233	251						
10TEE210+	L	Н	W	h						
Max. 41 p.	490	1160	233	251						
Max. 71 p.	630	1160	233	251						
Мах. 101 р.	770	1160	233	251						
Max. 151 p.	1000	1160	233	251						

All dimensions are given in mm. The dimensional tolerance is compatible with the accuracy permitted by the thermoforming process.

PB insulation (DN 65, DN 80, DN 100, DN 150 and DN 200 models)

Description

PB is the thermal insulation specifically designed for HVAC applications of our larger size plate heat exchangers.

PB is a self-supporting modular structure made with insulating panels (thickness 45 mm) anchored together by means of locking hooks and coupled in such a way as to minimize the thermal bridges.

The particular sandwich structure of the insulating panels, obtained by coupling two Aluminum foils to the polyurethane foam, ensures to the case high thermal insulation, good structural rigidity and appropriate surface finish.

Supplied as a kit, it is easily and quickly assembled without the use of special tools.

Advantages

- Heat exchanger completely contained inside the insulation: minimized energy losses and condensation, higher level of safety and comfort for those who work around the heat exchanger.
- Low installation costs.
- Quick and easy access to the heat exchanger for inspection.

Technical specifications

- Exterior finish of the panels: smooth sheet of pre-painted Aluminum RAL 2306 (thickness 0,5 mm).
- Insulating material: rigid foam of polyurethane with a high percentage of closed cells (above 95%) and a density of 48 kg/m³.
- Initial thermal conductivity coefficient (λ-value) of the insulating material: 0,024 W/m °C (measured at an average temperature of 10°C according to ISO 8302).
- Operating temperature: -10°C / + 130°C.
- Classification of fire resistance of the insulating material: B
 2s, d0 (according to EN 13501-1: 2007).

Dimensions

DN 65										
10TEE410+	L	Н	W	h						
Max. 41 p.	842	1637	554	171						
Max. 71 p.	842	1637	554	171						
Мах. 101 р.	982	1637	554	171						
Мах. 151 р.	1212	1637	554	171						
Max. 251 p.	1701	1637	554	171						

DN 80										
10TEE270+	L	Н	W	h						
Max. 41 p.	842	1357	554	198						
Мах. 71 р.	842	1357	554	198						
Мах. 101 р.	982	1357	554	198						
Мах. 151 р.	1212	1357	554	198						
Max. 251 p.	1701	1357	554	198						

DN 100										
10TEE300+	L	Н	W	h						
Max. 101 p.	1074	1180	678	198						
Max. 201 p.	1574	1180	678	198						
Max. 301 p.	2074	1180	678	198						
Max. 401 p.	2574	1180	678	198						
10TEE450+ & 10TEE455+	L	н	w	h						
Мах. 101 р.	1074	1625	678	198						
Мах. 201 р.	1574	1625	678	198						
Max. 301 p.	2074	1625	678	198						
Max. 401 p.	2574	1625	678	198						
10TEE705+	L	Н	W	h						
Max. 101 p.	1074	2090	678	198						
Max. 201 p.	1574	2090	678	198						
Max. 301 p.	2074	2090	678	198						
Мах. 401 р.	2574	2090	678	198						

DN 150											
10TEE400+	L	Н	W	h							
Max. 101 p.	1074	1433	757	256							
Max. 201 p.	1574	1433	757	256							
Max. 301 p.	2074	1433	757	256							
Max. 401 p.	2574	1433	757	256							
Max. 551 p.	3374	1433	757	256							
10TEE600+	L	Н	W	h							
Max. 101 p.	1074	1881	757	256							
Max. 201 p.	1574	1881	757	256							
Max. 301 p.	2074	1881	757	256							
Max. 401 p.	2574	1881	757	256							
Max. 551 p.	3374	1881	757	256							
10TEE900+	L	Н	W	h							
Max. 101 p.	1074	2374	757	256							
Max. 201 p.	1574	2374	757	256							
Max. 301 p.	2074	2374	757	256							
Max. 401 p.	2574	2374	757	256							
Max. 551 p.	3374	2374	757	256							
Мах. 701 р.	4204	2374	757	256							

DN 200										
10TEE650+	L	Н	W	h						
Max. 151 p.	1504	1764	957	285						
Max. 251 p.	2104	1764	957	285						
Мах. 351 р.	2504	1764	957	285						
Max. 551 p.	3404	1764	957	285						
10TEE990+	L	Н	W	h						
Мах. 151 р.	1504	2263	957	285						
Max. 251 p.	2104	2263	957	285						
Max. 351 p.	2504	2263	957	285						
Max. 551 p.	3404	2263	957	285						

All dimensions are given in mm. The dimensional tolerance is compatible with the accuracy permitted by the thermoforming process. The dimensions shown do not include the dimensions of the locking hooks. Total size: W + 30 mm / 30 mm L + / H + 15 mm.

Drip tray (all models)

Description

The drip tray is a safeguard device specifically designed to collect water or other fluids in case of unexpected fluid leakage or when the heat exchangers is open for maintenance.

Strongly recommended in case of hazardous media and when further protection for the outside environment is required, it is also used in cooling applications to collect condensate formed on the outside of the heat exchanger.

Designed to be positioned under the heat exchanger and fixed by fastening bolts on the anchor brackets, the drip tray is dimensioned to hold the entire plate pack and the two frame plates. In this way all eventual fluids coming from the heat exchanger can be collected in the drip tray and drained by mean of the apposite draining pipe.

Advantages

- Reduced risk of flooding in case of condensate, unexpected fluid leakage or when the heat exchangers is open for maintenance.
- Possibility to adjust tilt to facilitate drainage.
- Low installation costs.

Technical specifications

Material of construction: Stainless steel AISI 304 (thickness 1mm).

Draining pipe: 3/4" sleeve internally threaded

Main dimensions

The drip trays are available in various sizes to be fitted to all models of the standard range of gasketed plate heat exchangers.

Plate pack protection

All models

Description

The Plate Pack Protection is a safeguard device specifically designed to protect personnel in case of unexpected leakage. Strongly recommended in case of hazardous services, it should be always used when temperatures are over 60°C also when handling uncritical media.

The Plate Pack Protection consists of two or more metal sheets shaped to cover the plate pack and to fit the plate heat exchangers. On smaller units the sheets cover the plate pack enveloping the frame plates. On larger units the sheets are fitted between the tightening bolts and the plate pack.

Supplied as a kit, it is easily and quickly assembled without the use of tools nor screws or bolts.

Benefits

Higher level of safety for those who work around the heat exchanger.

Protection of the plate pack in case of aggressive or polluted environment.

Quick and easy access to the heat exchanger for inspection. Low installation costs.

Technical data

Material of construction: Stainless steel AISI 304 (thickness 1 mm).

Main dimensions

Each Plate Pack Protection is factory-tailor-made to fit to the specific plate heat exchanger.

